
We all appreciate the substantial differences 
among our friends and colleagues in their 
ability to see, think and act, and such  
variability introduces a rich diversity of 
culture and lifestyle into our society. In 
the neuro science of human behaviour and 
cognition, inter-individual differences 
are often treated as a source of ‘noise’ and 
therefore discarded through averaging data 
from a group of participants. Moreover, 
university students of industrialized Western 
countries are typically the participants in 
many psycho logy and neuroscience stud-
ies1. Despite the narrow selection of human 
diversity in such experiments, it is widely 
assumed that the conclusions drawn from a 
small sample generalize to the entire popula-
tion. However, inter-individual differences 
can be exploited to understand the cognitive 
processes underlying such behaviours2.

FIGURE 1 illustrates the sort of dataset that 
is typically used in behavioural experiments, 
in which responses — such as reaction times, 
perceptual thresholds or blood oxygena tion 
level-dependent (BOLD) signals — show 
differences between two experimental con-
ditions. Researchers typically focus on the 
change in the mean response associated with 

an experimental manipulation or behaviour 
(FIG. 1a). Such averaging of data across par-
ticipants is performed to reveal underlying 
effects despite the presence of measurement 

noise. However, this averaging ignores 
a large variation in individual responses 
(FIG. 1a, right panel). In this example, two 
participants (pink lines) show an opposite 
trend from that of the other participants and 
two participants (green lines) show much 
larger responses than other participants. 
These differences are typically viewed as 
measurement errors or as uninteresting 
peculiarities of individuals, and are there-
fore discarded. However, if they are highly 
consistent across different tests, then they 
are characteristics of the individuals and 
may ultimately reflect differences in their 
brain function. Moreover, as FIG. 1b makes 
clear, systematic patterns of inter-individual 
differences (in this case, half the sample 
showing an opposite response to that of the 
other half) can be dissociated from differ-
ences in mean activity (which are absent in 
this example).

In some areas of psychology, such as 
personality and intelligence research, the 
main focus has been on inter-individual 
differences. However, this potentially 
powerful approach has been almost com-
pletely neglected for many years in studies 
of the neural basis of more basic cognitive 
functions, such as perception and motor 
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Figure 1 | Examples of typical average and individual responses across two conditions. a | The 
mean responses for two conditions are illustrated in the left panel. In this example, the response 
in condition B is significantly larger than in condition A (P < 0.01). Error bars indicate one standard 
error of the mean (n = 12). Individual data comprising the mean responses are shown by lines in the 
right panel. Although the overall trend is consistent with the mean values (purple lines), some 
participants showed opposite trends (pink lines) and others showed much higher responses (green 
lines). Such inter-individual differences are masked by averaging but could be attributable to variability 
of brain function. b | The mean responses between conditions A and B do not show a difference. 
However, the underlying individual data could be divided into two groups of participants showing 
opposite trends (orange and purple lines). In such cases, the mean results would be uninformative, 
but specifically studying the cause of the opposite trends between the two groups could reveal 
relevant brain structures. 
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control. These studies have mostly focused 
on commonalities across individuals and 
thus often neglect inter-individual dif-
ferences. This may reflect the fact that, in 
everyday life, inter-individual differences 
in basic functions such as vision and action 
are less noticeable (unless there is a clear 
pathological deficit) than differences in 
personality traits or intelligence, and this 
has lead to an assumption that the neural 
bases of such basic functions are less variable 
across individuals.

In this Perspective, we argue that a large 
amount of phenotypic information about the 
neural basis of human behaviour and cogni-
tion can be obtained by specifically study-
ing inter-individual variability. As visual 
and motor cortices are arguably the most 
well-characterized regions in neuroscience, 
studying the neural basis of inter-individual 
differences in perception and motor behav-
iour could be a fruitful approach to under-
standing how structural differences affect 
the capacity of the brain regions involved.

Methods that provide measures of neural 
activity (such as functional MRI (fMRI)3–12, 
electroencephalography (EEG)13–19, positron 

emission tomography20–23 and magnetic 
resonance spectroscopy24–26) have been used 
to study the neural bases of individual differ-
ences in cognition. However, here we focus 
on the recently growing body of evidence 
that inter-individual variability in a wide 
range of human behaviours can be predicted 
from the structure of grey matter and white 
matter tracts of the human brain measured 
with MRI (BOX 1).

Most anatomical MRI studies have 
focused on differences in brain structure 
between groups of experts in a particular 
domain and groups of non-experts. People 
with specialized skills such as musicians27,28, 
London taxi drivers29, or Italian bilinguals30 
have markedly developed brain structures 
in specific brain regions associated with 
their expertise. But experts are by defini-
tion extremes in the general population, 
and there is increasing evidence that ana-
tomical MRI can detect more subtle inter-
individual differences even within groups 
of non-experts. We therefore review studies 
that specifically examine inter-individual 
differences within a population of healthy 
adults, rather than the extensive literature 

comparing neuroanatomical differences 
between particular groups (for example, 
those with neurological and psychiatric  
diseases) and healthy volunteers.

Motor behaviour and decision making
Perhaps the simplest action that can be 
taken in response to a visual stimulus is to 
press a button. Reaction times vary accord-
ing to whether the responding hand is 
contralateral or ipsilateral to the stimulated 
visual field, which has been attributed to 
timing delays associated with the need for 
inter-hemispheric neural signalling when 
the responding hand is contralateral to the 
stimulated visual field. Inter-individual 
differences in this interhemispheric trans-
mission time are reflected in the micro-
structural integrity of the corpus callosum, 
assessed by diffusion tensor imaging (DTI), 
in healthy volunteers31 and individuals 
with schizophrenia32.

Other simple motor paradigms also show 
inter-individual variability associated with 
differences in brain structure. For example, 
variability in choice reaction time (that is, 
the time taken to indicate a choice, usually 
by pressing a button) across individuals 
correlates with fractional anisotropy of the 
optic radiation33 (FIG. 2a) as measured by DTI 
(BOX 1). With regard to more complex motor 
coordination, inter-individual differences in 
the skill of a bimanual coordination task are 
reflected in the differences in the integrity 
of the part of the corpus callosum that links 
supplementary motor areas34. Moreover, 
inter-individual variability in the ability to 
select the correct response in the presence of 
response conflict correlates with the grey mat-
ter density of the pre-supplementary motor 
area (pre-SMA)35 (FIG. 2b). Thus, it seems 
that inter-individual variation in both the 
initiation and the cognitive control of simple 
and complex motor tasks is reflected in the 
structural anatomy of the brain.

In decision making, fast decisions often 
come at the cost of reduced accuracy36,37. 
This phenomenon is termed the speed–
accuracy trade-off and has been observed in 
many decision-making tasks38–41. Thus, when 
faster responses are required, one needs to 
flexibly adjust the decision criterion. There 
are considerable inter-individual differences 
in the ability to flexibly adjust the speed–
accuracy trade-off, and this variability corre-
lates with connection strengths between the 
pre-SMA and striatum, as measured using 
DTI42 (FIG. 2c). This finding is compatible 
with earlier functional MRI studies show-
ing, first, that the areas connected by this 
pathway are activated by cues that indicate 

 Box 1 | Methodological definitions

Computational approaches in the analysis of high-resolution MRI of the human brain provide a 
powerful tool for characterizing individual differences in brain anatomy. Several methods have 
been developed to quantify and systematically compare morphological differences (determined in 
a reproducible and semi-automated fashion) in brain structures. The method most commonly used 
to detect subtle differences in brain structure is voxel-based morphometry (VBM)162,163. Typically, 
VBM involves segmentation of anatomical MRI images into tissue types such as grey matter and 
white matter and cerebrospinal fluid. Images from each participant are then spatially warped into 
a common stereotactic space and the gross morphological differences across participants are 
removed. These pre-processing procedures ensure that the original regional grey matter volume 
is maintained (see REF. 164 for details). The processed images represent regional grey matter 
(or white matter) volumes of each participant and are used for statistical analysis to examine 
correlations with independent behavioural or psychological data. Although various terms exist — 
such as grey matter density, concentration and volume — the actual quantity assessed in most 
VBM studies is the local grey matter volume at individual locations (voxels) in the brain165,166 
(see REF. 162 for distinctions of various terms for grey matter density).

However, as grey matter volume is a product of thickness and surface area, differences in local 
grey matter volume can also arise from differences in cortical thickness and variation in surface 
area due to the folding pattern. Cortical thickness and surface area can be independently 
estimated at each point on the cortical surface using fully automated procedures167–170. Cortical 
thickness varies considerably between cortical areas171. These variations across the cortex may 
reflect differences in cell types172 or neuron densities173, although detailed cytoarchitectonic 
studies of the cortical sheet in humans have yet to be carried out.

The human brain also exhibits individual differences in white matter microstructure174,175. 
Diffusion tensor imaging (DTI) provides measures of white matter integrity in the brain. The 
technique involves measuring the impediment to water diffusion that results from local tissue 
boundaries such as cell membranes. In particular, fractional anisotropy — a measure derived 
from a collection of diffusion-weighted images — is frequently used, as it reflects regional white 
matter features such as axon calibre, fibre density and myelination176. The relationship between 
these microstructures and fractional anisotropy suggests that higher fractional anisotropy values 
are associated with more efficient neuronal conduction via the white matter. A more elaborate 
method of probabilistic tractography with DTI can be used to estimate the strength of the 
structural connection between two regions of interest177. Strengths of tract connectivity 
estimated for individuals can then be linked with inter-individual differences in human behaviour.
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higher demands for response speed; and sec-
ond, that activation in these areas correlates 
with the ability to switch between cautious 
and risky behaviours43. These studies of 
inter-individual differences also suggest that 
the cortico–basal ganglia circuitry regulates 
the speed–accuracy trade-off.

As these examples illustrate, studies of 
inter-individual differences are not limited to 
explaining the neural basis of performance 
differences between individual partici-
pants, but can be exploited to reveal the 
circuitry associated with a particular  
cognitive function.

Perception
The existence of inter-individual variability 
in psychophysical thresholds for sensory 
discrimination has been known for many 
years, as has that of inter-individual vari-
ability in the size of components of early 
sensory processing pathways, such as the 
lateral geniculate nucleus and primary visual 
cortex in the visual pathway44,45. The size of 
the surface area of the primary visual cortex 
that is devoted to processing visual signals 
from a particular part of the visual field var-
ies as a function of eccentricity from fixation, 
and this relationship can be characterized by 
the cortical magnification factor46. In humans, 
inter-individual variability in the visual 
acuity threshold correlates with this corti-
cal magnification factor, establishing a link 
between variability in perception and brain 
structure47. However, such a relationship 
was established in studies in which both 
perception and physical stimulation varied 
at the same time. More recent work has 
sought to dissociate perception and physi-
cal stimulation, establishing a link between 
sensory awareness and brain structure, as 
discussed below.

Perceptual rivalry. When visual input has 
conflicting interpretations (for example, 
the Necker cube), conscious perception 
can alternate spontaneously between the 
competing interpretations. Such spontane-
ous fluctuations of conscious perception 
can be used to delineate the neural basis of 
conscious perception48, because the subjec-
tive perception fluctuates while the physical 
stimulation is constant. Surprisingly, there 
is great inter-individual variability in the 
rate at which these spontaneous alternations 
occur49,50. A recent study tested whether 
an individual’s ‘perceptual switch rate’ was 
reflected in their cortical thickness, local 
grey matter volume and/or white matter 
integrity. All of these measures of brain struc-
ture converged to show that the structure of 

the bilateral superior parietal lobes (SPLs) 
can account for inter-individual variability 
in perceptual switch rate. Specifically, indi-
viduals with a fast switch rate have thicker 
and larger volume SPLs than individu-
als with a slow switch rate, and the white 
matter underlying the SPLs has a higher 
integrity. This correlation of SPL structure 
with individuals’ switch rates suggests that 

these bilateral regions are involved in trig-
gering spontaneous perceptual switches51. 
Furthermore, the anterior part of the right 
intraparietal sulcus (IPS) shows an opposite 
correlation — that is, the larger the grey mat-
ter volume of this area, the slower the switch 
rate (FIG. 3a). The opposing influences of the 
SPLs and the anterior IPS suggest that these 
areas might have complementary roles, with 

Figure 2 | Structural bases of inter-individual differences in action and decision making. a | The 
speed of reaction time in making a visual choice correlates with the fractional anisotropy (a measure 
of white matter integrity) of the right optic radiation (indicated by the white box). b | Grey matter 
density of the pre-supplementary motor area (pre-SMA) correlates with the degree of the response 
conflict effect. The scatter plot shows the correlation in the condition in which conflicting response 
tendencies were elicited consciously (because the conflicting stimuli were only weakly masked).  
c | Connection strength between the pre-SMA (upper green area in the left panel) and striatum 
(lower green area in the left panel) correlates with individuals’ ability to adjust the speed–accuracy 
trade-off. Part a is modified, with permission, from REF. 33 © 2005 National Academy of Sciences.  
Part b is modified, with permission, from REF. 35 © 2011 MIT Press. Part c is modified, with permission, 
from REF. 42 © 2010 National Academy of Sciences.
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the SPLs detecting possible alternative  
perceptual interpretations, and the anterior 
IPS sustaining the current percept52.

The parietal cortex areas in which 
structural variation is associated with 
perceptual switch rate are similar to the 
regions that are activated when percep-
tual switches occur53–56. Previously, it was 
unclear whether the functional role of 
these parietal structures was related to the 
active triggering of perceptual switches53,57 
or instead to sustaining the current per-
cept58,59. The anatomical studies described 
above, corroborated by complementary 
transcranial magnetic stimulation (TMS) 

experiments51,52, suggest that the parietal cor-
tex contains different subregions associated 
with both proposed functions.

Despite earlier findings53–56 that prefrontal 
cortical regions are also activated during 
perceptual switches, anatomical studies51,52 
have not found a neural correlate of per-
ceptual switch rate in prefrontal regions. 
Whether this dissociation indicates that 
inter-individual differences in switch rate 
are attributed only to the parietal, but not 
to the frontal, cortex remains to be deter-
mined, as the inability to identify structural 
correlates in the prefrontal cortex could 
simply be a matter of statistical power.

Sensory awareness. Subjective awareness of 
physically identical visual stimuli can also 
vary across different individuals. For example, 
individuals with colour blindness perceive 
colours differently to those with normal 
vision. This raises the possibility that even 
individuals with normal vision may show 
variability in how they perceive the world. 
Although it is difficult to directly compare 
the subjective experiences of different people, 
inter-individual differences in the perceived 
strength of a perceptual illusion — whereby 
physically identical stimuli produce perceptu-
ally different appearances depending on their 
local context — can be quantitatively com-
pared. In a study that compared individuals’ 
susceptibility to geometrical visual illusions 
(the Ponzo and Ebbinghaus illusions), just 
such variability in illusion strength was 
found60. Moreover, the strength of the illusion 
correlated negatively with the size of early 
retinotopic visual area V1, but not visual area 
V2 and visual area V3 (REF. 60) (FIG. 3b; see 
BOX 2 for possible mechanisms mediating 
such correlation).

Retinotopic mapping techniques using 
fMRI allow delineation of borders between 
early visual areas, and close relationships 
between anatomical folding patterns and 
retinotopic representations of early visual 
areas have been reported61. By contrast, a 
purely anatomical measure of the surface 
area of the peri-calcarine cortex (where V1 
is located) does not correlate with the illu-
sion strengths60. This suggests that the size 
of the surface areas of visual regions (as 
determined by fMRI62) reflect an individual’s 
visual experience much more sensitively than 
crude gyral and sulcal anatomy alone. In 
non-visual cortical regions, it is generally dif-
ficult to estimate the size of the surface areas 
of functionally segregated areas because it is 
difficult to unambiguously delineate the bor-
ders between them. For subcortical regions, 
however, the size can be unambiguously 
estimated on the basis of structural MRI 
measurements (for example, the size of the 
amygdala or hippo campus63–65). It is thus pos-
sible to establish the relationship between the 
size of such regions and inter-individual vari-
ability in cognition and behaviour. For exam-
ple, the size of the amygdala correlates with 
inter-individual differences in memory66, 
social phobia67 and social network size68.

The grey matter density in the calcarine 
sulcus (plus the auditory cortex) is also 
associated with inter-individual differences 
in synaesthetic experiences, in which a par-
ticular stimulus evokes a sensory experience 
in addition to the modality-typical sensory 
experience69. Grapheme–colour synaesthesia 

Figure 3 | Structural bases of inter-individual differences in conscious perception. a | Structural  
correlates of inter-individual differences in the duration of one percept in a perceptual rivalry task (in 
which a single visual input can have conflicting interpretations) (left panel). A larger posterior superior 
parietal lobe (pSPL) was associated with a slower rate of switching between competing interpretations 
of a visual input, whereas a larger anterior superior parietal lobe (aSPL) was associated with a faster 
switch rate. Data in the middle and right panels are from REF. 51 and REF. 52, respectively.  
b | The surface areas of visual cortical areas V1, V2 and V3 from two example participants (left panels). 
A larger V1 was associated with weaker Ebbinghaus and Ponzo illusions (right panels). c | A structural 
correlate of metacognitive ability (left panel). Statistical T-maps for positive (‘hot’ colour map: red, 
orange and yellow) correlations and negative (‘cool’ colour map: blue) correlations between grey mat-
ter volume and metacognitive ability are projected onto an inflated cortical surface. Better metacogni-
tive abilities were associated with a larger Brodmann area 10 (BA10), an area in the rostral prefrontal 
cortex (right panel). The left panel of part a is reproduced, with permission, from REF. 52 © 2011 Cell 
Press. Part b is reproduced, with permission, from REF. 60 © 2011 Macmillan Publishers Ltd. All rights 
reserved. Part c is modified, with permission, from REF. 80 © 2010 American Association for the 
Advancement of Science.
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— in which letters and numbers are associ-
ated with certain colours — is one of the most 
common types of synaesthesia. There are two 
types of grapheme–colour synaesthetes: ‘pro-
jectors’ see the associated colour in the exter-
nal world, whereas ‘associators’ experience the 
colours in their mind. Projectors have more 
grey matter in the calcarine sulcus and the 
prefrontal cortex than associators, and asso-
ciators have more grey matter in the hippo-
campus and angular gyrus than projectors. 
These findings suggest that the experiences 
of associated colours in the external world in 
projector synaesthetes may be mediated by 
the primary sensory cortex.

Metacognition. Metacognition, or ‘cognition 
about cognition’, refers to the ability to com-
ment or report on one’s own mental state70 
and is often considered the touchstone of the 
presence of consciousness in humans71–74 and 
animals75,76. In the context of sensory process-
ing, we can be correct or incorrect in our per-
ceptual judgments, but we can also provide 
a metacognitive estimate of our confidence 
each time we make such a judgment. The 
ability of different individuals to accurately 
link confidence and performance — that is, 
their metacognitive ability — can be formu-
lated and quantified using the so-called type 2 
performance in signal detection theory77,78.

Substantial inter-individual differences 
exist in metacognitive ability79. A recent 
voxel-based morphometry (VBM) study 
revealed that metacognitive ability — defined 
operationally as the ability to appropriately 
link insight (confidence) to objective per-
formance in a perceptual decision-making 
task — is reflected in the grey matter vol-
ume of the rostral prefrontal cortex and 
precuneus80 (FIG. 3c). Fractional anisotropy 
in the genu of the corpus callosum also cor-
relates with metacognitive ability, suggesting 
the importance of white matter connections 
linking the rostral prefrontal cortex to other 
cortical regions80.

These three studies of inter-individual 
differences in visual awareness suggest that, 
although the architecture of the basic visual 
pathways must be similar among healthy 
individuals, differences in their subjective 
experiences can be attributed to region-
ally specific morphological differences in 
the brain.

Attention. The ability to control atten-
tion to relevant tasks varies considerably 
across individuals. The attention network 
test (ANT) is widely used to assess three 
dissociable aspects of attention: execu-
tive control, orienting and alerting81,82. 

Cortical thickness in several brain regions 
is positively correlated with the executive 
control and alerting (but not the orienting) 
components of attention83. Specifically, the 
executive control component of attention 
is reflected in the thickness of the anterior 
cingulate cortex, the right inferior frontal 
gyrus and left medial frontal areas extend-
ing to the frontal pole and dorsolateral 
prefrontal cortex. By contrast, the alerting 
component of attention is negatively corre-
lated with the thickness of the left superior 
parietal lobe extending to the precuneus. 
These findings of structure–cognition 
relationships illustrate that individual dif-
ferences in attentional networks can be 
mapped onto differences in grey matter 
brain structure.

Functional neuroimaging studies have 
implicated areas in attentional control 
that are broadly similar to those that show 
inter-individual variability in structure. 
For example, the anterior cingulate cor-
tex and the right inferior frontal gyrus 
are activated during the ANT84 and in 
tasks that involve conflict monitoring and 
response inhibition (types of executive 
control)85,86, and the alerting component 
of the ANT is associated with activation of 
the left superior parietal cortex. However, 
dissociations between structural and 
functional findings are also observed. For 
example, the alerting component of the 
ANT induced stronger activation in brain 
regions the thickness of which does not 
correlate with attentional performance, 

 Box 2 | What mechanisms might link the size of the sensory cortex with awareness?

In the Ebbinghaus illusion (see the figure, 
part a), the two orange disks are exactly the 
same size, but the left disk is perceived to be 
smaller than the right disk because of the 
surrounding ‘inducers’. The magnitude of 
this illusion can be quantified by measuring 
how much the sizes of the disks need to be 
physically changed for the two disks to 
appear to be the same size. The magnitude of 
this size illusion varies considerably across 
individuals and such variability correlates 
with the size of the functionally defined 
surface area of the primary visual cortex (V1). 
What might be the mechanism that links the 
size of V1 to illusion strength?

This relationship may be understood in terms 
of scaling principles of overall brain size178. As 
a neocortical area such as V1 becomes larger, 
the spatial extent of neurons needs to become 
larger to maintain the same extent of visual 
field coverage (from the red neuron in the 
small V1 to the blue neuron in the large V1 in 
part b of the figure). However, increases in the size of neurons negatively affect the electrical 
conduction properties of the dendrites and axons, because the electrical signal in the dendrite 
attenuates as a function of distance. To maintain the same signal conductivity in larger neurons, 
the diameter needs to be disproportionally thicker with increases in length: if dendrites are twice 
as long in a large neuron, then the dendrites need to be four times as thick as the original neuron 
to maintain the same conductivity properties. However, the cost of compensation by increasing 
dendrite thickness is high and the increase in the size of neurons is therefore biophysically 
limited. This scaling principle suggests that the size of neurons is not proportionally scaled to 
the size of brain areas. Thus, the increase in the extent of dendrite arborization is comparatively 
smaller as brain size increases178. This implies that, in a larger V1, the lateral spread of dendrites 
covers a proportionally smaller area in retinotopic space than in a smaller V1 (the red neurons in 
part b of the figure), and the spatial extent of lateral interaction becomes weaker (see the 
corresponding shrinkage of visual field coverage by the neuron of the same size (right panel). 
Thus, the scaling principle could explain the weaker illusion strength in individuals with a large 
V1 as it implies that lateral interactions would be weaker in a larger V1. Although this hypothesis 
can offer a possible explanation for the observed size–percept relationship, the idea presented 
here remains speculative. Thus, further investigations in animal models and using post-mortem 
histology are needed to understand how differences in macroscopic brain structure, such as grey 
matter volume or cortical surface area, might be translated into differences in microstructure, 
such as the size of neurons or the degree of myelination (see the subsection ‘Microstructural 
basis of MRI’). Figure is modified, with permission, from REF. 178 © 2000 Springer.
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such as the right superior temporal 
gyrus84. Such differences may arise because 
the structural MRI analyses reviewed here 
focus on the variability that gives rise to 
inter-individual differences in behaviour, 
whereas fMRI studies typically reveal the 
most consistent activation of brain regions 
across individuals. A direct comparison 
of inter-individual differences in fMRI 
signals with VBM within the same partici-
pants will be important for understanding 
the relationship between functional and 
structural MRI results87–90.

Intelligence and personality
Economic motivation and decision making. 
In addition to simple decision-making 
behaviour (discussed above), more complex 
motivation and decision-making processes 
show correlations with brain structure. 
For example, inter-individual differences 
in delay-discounting behaviour (the ten-
dency to prefer receiving small, immediate 
rewards over large, delayed rewards) are 
correlated with white matter integrity in 
frontal and temporal lobe white matter 
tracts in 9–23-year-olds91.

The idea that delay-discounting behav-
iour in children is reflected in the develop-
ment of connections within the prefrontal 
cortex91 is consistent with the involvement 
of the prefrontal cortex in this type of 
behaviour. For example, higher BOLD 
responses are observed in the prefrontal 
cortex when adult participants choose a 
delayed rather than an immediate reward92. 
Similarly, the association of the integrity 
of white matter tracts in the temporal lobe 
with delay-discounting behaviour91 is con-
sistent with studies showing that rats with 
hippocampal damage choose immediate 
rewards in delay-discounting tasks93.

Intelligence and information processing 
speed. In contrast to the study of motor 
behaviour or visual perception, the psy-
chology of human intelligence has a long 
tradition of specifically investigating indi-
vidual differences in humans, and there is 
a rich literature on this topic. The cogni-
tive neuroscience of intelligence is beyond 
the scope of this Perspective and has been 
reviewed elsewhere94.

Some examples of the correlation of 
brain structure with measures of intelli-
gence include structural MRI studies that 
show that inter-individual variability in 
intelligence correlates with cortical thick-
ness95–98 and white matter integrity, as 
assessed with DTI99–102. Moreover, a global 
network parameter that is derived from 

white matter tractography and reflects 
network efficiency is correlated with 
intelligence103, suggesting that the degree 
to which white matter connectivity can 
support efficient information process-
ing may be important for intelligence. 
Information processing speed, assessed by 
simple reaction tasks, is associated with 
intelligence104,105. In healthy older people, a 
general factor associated with white matter 
integrity (across eight major white matter 
tracts quantified using probabilistic trac-
tography techniques) predicts information 
processing speed106.

Personality. In psychology, many ques-
tionnaires have been devised to measure 
personality traits. Personality psycholo-
gists often use a model called the ‘Big 
Five’107 to describe the fundamental 
dimensions of personality traits; these 
comprise neuroticism, extraversion, open-
ness, agreeableness and conscientious-
ness. Differences in these broad factors 
and their narrower facets across indi-
viduals have consequences on everyday 
behaviour108 and in cognitive tasks109–111. 
Moreover, up to half of the variability 
in these five personality traits is herit-
able112,113, suggesting that inter-individual 
differences in these traits have biological 
bases in the brain114. In addition, the high 
degree of heritability in such psychological 
constructs indicates the biological rel-
evance and validity of psychometrics, and 
thus motivates further investigation of 
their relationship to the brain. 

As with research on intelligence, per-
sonality psychology has a long tradition 
of studying inter-individual differences. 
However, investigations into the structural 
bases of the Big Five personality traits 
have started only recently (FIG. 4). One 
study found that anatomical variability in 
specific brain regions predicts inter-indi-
vidual differences in personality traits115. 
Specifically, extraversion correlates 
positively with grey matter volume in the 
medial orbitofrontal cortex. By contrast, 
neuroticism correlates negatively with grey 
matter volume in the right dorsomedial 
prefrontal cortex and left medial temporal 
lobe, and correlates positively with grey 
matter volume in the mid cingulate cortex. 
Agreeableness correlates positively with 
grey matter volume in the posterior cingu-
late cortex and correlates negatively with 
that in the superior temporal sulcus and 
fusiform gyrus. Conscientiousness cor-
relates positively with grey matter volume 
in the lateral prefrontal cortex. However, 

openness does not show statistically signif-
icant correlations with grey matter volume 
in any given region. Similarly, brain struc-
ture correlates of more specific traits such 
as impulsivity (as measured by the Barret 
Impulsivity Scale) have been found in the 
orbitofrontal cortex116. Variation in the 
volume of the orbito frontal cortex is also 
related to variability in emotion regulation 
and affect117.

Neuroanatomical investigations into 
the biological basis of personality traits 
measured by self-report questionnaires 
may in the future provide a solid ground 
for traditional personality psychology, 
which currently relies heavily on semantic 
description and the participants’ ability 
to estimate their own personality (that is, 
metacognition). Furthermore, question-
naire-based approaches to probing brain 
structure may allow a set of questions to 
be devised the answers to which predict 
the size of brain structures of interest. For 
example, it is possible that an individual’s 
answer to the question “Are you scared 
of snakes?” may predict the size of the 
amygdala — a key region for processing 
fear memories — of that individual. Such 
approaches may reveal links between a 
brain region and its function in everyday 
life. A crucial challenge for brain structure 
analyses will be the ability to predict an 
individual’s ability or personality bet-
ter than self-report questionnaires. Self 
reports reflect a range of cognitive biases 
(such as overestimation known as the 
Kruger-Dunning effect118), and structural 
MRI data could potentially offer less 
biased information about an individual’s 
personality trait. At present, no direct 
comparison between a questionnaire and 
brain structure measurements has been 
reported. However, such comparisons will 
be crucial to test brain-based descriptions  
of personality traits in future.

Social cognition. Humans are social ani-
mals, but they show variability in the 
degree to which they engage in social 
activity. The volume of the amygdala cor-
relates with the size and complexity of 
social networks in adult humans68, and 
there are relationships — albeit weaker 
— between variables reflecting the struc-
ture of an individual’s social network and 
cortical thickness in three cortical areas 
connected with the amygdala68. Thus, 
even complex psychological concepts 
such as the construction and maintenance 
of social networks have a correlate in 
brain structure.
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Genetic and plasticity effects on anatomy
Studies in monozygotic and dizygotic twins 
have shown that grey matter volumes of the 
prefrontal and temporal cortex are strongly 
influenced by genetic factors119, whereas other 
areas are less strongly affected. This suggests 
that the heritability of a particular cognitive 
function depends on the extent to which the 
relevant cortical regions are influenced by 
genetic factors120–122. Genetic factors contrib-
ute to cortical thickness and surface area size 
independently123. Such genetic contributions 
to variations in brain structure may underlie 
heritability of cognitive abilities such as the 
intelligence quotient (IQ)97,124–128.

Although early stages of brain devel-
opment are mediated by genetic pro-
grammes129,130, later stages of development, 
as well as brain organization and brain 
maturation, result from interactions between 
genetic and environmental factors131,132. 
Indeed, recent VBM findings indicate that 
brain structure is not determined solely by 
genetic factors but is extensively modulated 
by experiences such as prolonged train-
ing133–138. For example, training on a visual 
motor coordination task, such as learning to 
juggle, has a measurable effect on grey mat-
ter volume of visual motion processing area 
V5 and the posterior parietal cortex133,135 as 

well as white matter integrity of neighbour-
ing fibres that presumably mediate visuo-
spatial transformation138. Moreover, such 
structural plasticity can be demonstrated 
in the adult brain across training periods as 
short as 90 minutes over 2 weeks139.

Moreover, compared with carefully 
matched, illiterate controls, individuals who 
have learned to read for the first time as 
adults have greater grey matter volume in 
the bilateral angular, dorsal occipital, middle 
temporal, left supramarginal and superior 
temporal gyri140 (see also REF. 141). These 
areas are associated with crucial functions 
for literacy such as semantic, phonological 
and high-level visual processing142,143 and 
highlight the possibility that plastic struc-
tural changes in the adult human brain are 
associated with training.

Correlations in performance across tasks
In structural MRI studies, such as those 
discussed above, measurements of brain 
structure can be performed separately from 
measurements of behavioural perform-
ance, which can occur outside the MRI 
scanner using conventional behavioural or 
psychological tasks. This separation offers 
the opportunity to study the relationship 
between brain regions and relatively static 

properties of an individual’s characteristics, 
such as personality traits. By contrast, func-
tional neuroimaging studies using fMRI 
and EEG require task designs that evoke 
activation in the brain in a manner that is 
relevant to the trait of interest (for example, 
REFS 4,10), which can be difficult. Thus, an 
important advantage of neuroanatomical 
studies of inter-individual differences (over 
studies using fMRI or EEG) is that they 
allow one to link an individual’s perform-
ance or trait as measured in an ecologically 
valid environment (that is, outside an MRI 
scanner) to brain structure measurements 
obtained in an MRI scanner.

It is conceivable that inter-individual 
differences in performance on a single task 
can be mapped onto the structure of a single 
brain region, but such a simplistic notion of 
a one-to-one mapping between a cognitive 
function and the structure of a brain region 
needs to be examined carefully. As has been 
shown in many functional neuroimaging 
studies, a single region can be involved in a 
broad range of tasks. Thus, it is unlikely that 
there is always one core region that is crucial 
for a particular cognitive function. Instead, a  
region with a structure that correlates with 
a behavioural measure needs to be inter-
preted in the context of the known functions 
of the region and its role in other, related 
behavioural tasks.

The separation of behavioural measure-
ments from structural measurements of 
brain anatomy also permits multiple tasks to 
be administered to the same set of partici-
pants. One successful approach to analysing 
the correlations between related cognitive 
tasks uses principal component analysis or 
factor analysis. For example, research into 
the principal factors in working memory and 
attentional tasks has characterized how dif-
ferent aspects of working memory and atten-
tion correlate with each other144. Moreover, 
the components derived from such an analy-
sis can subsequently be used to determine 
whether the structure of particular brain 
areas is associated with each component in a 
VBM analysis. Such a combined approach of 
factor analysis and VBM has been success-
fully applied to face perception in individu-
als with developmental prosopagnosia145. This 
multivariate approach to analysing behav-
ioural data is a promising way to address 
correlations between different tasks, as it 
can potentially reveal common underlying 
components and any neural substrates. Such 
an approach may provide new insights into 
how different cognitive functions are related 
to each other and which regions underlie 
those functions.

Figure 4 | Brain structure correlates of higher cognitive functions. a | Grey matter (GM; left panel) 
and white matter (WM; right panel) correlates of general intelligence. Greater grey matter and white 
matter volumes in specific brain areas are associated with higher intelligence. b | Grey matter correlates 
of the Big Five traits. Grey matter volume in specific cortical areas correlates with scores on a specific 
trait. PFC, prefrontal cortex. Part a is reproduced, with permission, from REF. 125 © 2004 Elsevier.  
Part b is modified, with permission, from REF. 115 © 2010 Sage Publications.
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A disadvantage of studies that relate 
brain structure to behaviour is that the data 
are temporally unchanging, except when 
specifically studied through characteriza-
tion of anatomical changes associated with 
learning or development. This contrasts with 
the temporally dynamic nature of functional 
neuroimaging data, which allows researchers 
to investigate how activation patterns change 
over time across the brain and to character-
ize functional interactions between distant 
brain regions. However, there have been 
attempts to reveal network structures in the 
brain by examining the structural covaria-
tion of brain regions146–148. Such analyses of 
structural covariance across the brain may 
offer the possibility of characterizing indi-
viduals in terms of network strengths instead 
of voxel-based local volumes.

Limitations of current research
Microstructural basis of MRI. Understanding 
the cellular basis of local changes in grey 
matter volume is necessary for a better 
interpretation of VBM studies. However, 
the microstructure and cellular events 
that give rise to a global quantity that can 
be measured by structural MRI remain 
poorly understood. One possibility is that 
differences in grey matter volume reflect 
underlying synaptogenesis and dendritic 
arborization, which in rats are known to 
vary markedly between animals reared 
in environments of different levels of 

complexity149,150. Such experience-dependent 
formation and elimination of synapses  
continues into adulthood in rodents151.

The radial unit hypothesis put forward 
by Rakic suggests that neurons within the 
same cortical column have a common devel-
opmental origin and migrate along the same 
pathway from the ventricular zone131,152,153. 
Before migration starts, progenitor cells 
undergo symmetrical cell division and 
increase the number of the radial columns 
in the ventricular zone. This process has 
consequences for the allocation of cortical 
columns and regional surface areas in the 
mature cortex. By contrast, the thickness of 
the cortex is determined by the number  
of cells produced by asymmetrical cell divi-
sions within the ontogenic columns152,153. 
These two stages of cellular events (that is, 
symmetrical and asymmetrical cell divi-
sions) are likely to be controlled by different 
sets of genes. Consistent with this model, 
cortical thickness and surface area size are 
independently heritable in humans123. The 
radial unit hypothesis provides an important 
framework for understanding how indi-
vidual differences in cortical thickness and 
surface area may be determined by genetic 
and developmental processes.

However, a direct link between micro-
structures and macrostructures has not been 
established in the human brain. A histo-
logical study directly compared whether 
histopathological measurements of resected 

temporal lobe tissue correlated with grey 
matter density as used in typical VBM stud-
ies154. However, none of the histological 
measures — including neuronal density 
— showed a clear relationship with the grey 
matter volume154. We suggest that determin-
ing the microscopic neuronal structures 
that give rise to macroscopic structural dif-
ferences will be an important step towards 
understanding how volumetric measures 
of the brain structure translate into differ-
ences in computational capacity. However, 
different populations should be compared 
with caution, as the microstructural events 
that correlate with a cognitive function may 
differ between, for example, healthy and 
diseased or young and old individuals. Some 
VBM studies show a negative correlation 
between grey matter volume and cognitive 
performance (BOX 3). To interpret such seem-
ingly paradoxical results, it will be important 
to investigate how macroscopic volumetric 
measures are reflected in microstructures at 
the cellular level.

From correlation to causation. In general, 
when we try to relate inter-individual differ-
ences to brain structure using VBM, we face 
a massive multiple-comparison problem. This 
requires both a large sample of participants 
(typically tens to hundreds of participants) 
and fairly high correlations between brain 
structure and behavioural data to achieve 
conventional levels of statistical significance 
with appropriate correction for multiple 
comparisons. The upper limit of any cor-
relation is constrained by the reliability of 
both behavioural and MRI measurements, 
and this reliability can be assessed by test–
retest consistency in the same participants. 
Thus, improving the behavioural meas-
urements could improve the sensitivity of 
VBM analysis.

As with studies investigating brain 
activation using fMRI, VBM studies of 
brain anatomy are intrinsically correla-
tional. They can only show an association 
between the structure of a particular brain 
region and some behavioural performance. 
Such correlational associations do not 
necessarily imply causal relationships, and 
there are also chances of false discoveries 
due to the highly multidimensional nature 
of such correlational analyses.

To complement such correlational analy-
ses, we suggest that intervention studies 
using brain stimulation techniques such as 
TMS and transcranial direct current stimu-
lation (tDCS) can provide independent sup-
port for a causal link between structure and 
function. For example, in the VBM studies 

Glossary

Corpus callosum
A white matter structure that connects the left and right 
cerebral hemispheres.

Cortical magnification factor
The size of the surface area of the visual cortex relative to 
the size of the visual field it represents. It is generally larger 
for the central part of the visual field near the fovea and 
smaller for higher eccentricity.

Decision criterion
An evaluative criterion used for selecting one option from 
several possible actions or percepts.

Developmental prosopagnosia
A congenital impairment in the ability to recognize 
faces without any deficit in recognizing other categories 
of objects.

Eccentricity from fixation
The distance of a given position in the visual field from 
the point of fixation (that is, the centre of the visual field). 
Eccentricity is usually measured in degrees of visual angle.

Fractional anisotropy
A scalar measure of directionality of diffusion of 
water molecules derived from a collection of 
diffusion-weighted images. It is thought to reflect 

regional white matter features such as axon calibre, fibre 
density and myelination that are associated with white 
matter integrity.

Multiple-comparison problem
The high probability of obtaining a false-positive result 
when multiple inferential statistical tests are conducted 
in parallel (for example, across many voxels). Statistical 
methods to address this problem require a strong level 
of evidence to detect genuine relationships.

Optic radiation
A bundle of white matter fibres that relays visual 
information from the lateral geniculate nucleus to the 
visual cortex.

Response conflict
A situation in which an automated response competes 
with a voluntary choice of task-relevant action.

Signal detection theory
A theoretical framework to compute the ability to 
discriminate a signal from noise.

Type 2 performance
A measure of the ability to discriminate correct 
responses from incorrect responses using introspection 
or subjective confidence.
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of perceptual rivalry described above51,52 
(FIG. 3a), we first identified cortical regions 
the structure (that is, cortical thickness) of 
which correlated with individuals’ switch 
rates between competing perceptions, and 
then used TMS to confirm that those regions 
have a causal role in generating switches. 
Correlations between the thickness or size 
of a brain structure and performance on a 
task of interest can be used to generate new 
hypotheses as to which brain areas might be 
crucial for the performance of the task. The 
functional involvement of those areas in the 
task can subsequently be confirmed (or dis-
proved) by disrupting the function of those 
regions with intervention methods such as 
TMS and tDCS.

It is often assumed that there is a close 
relationship between changes in brain struc-
ture measured using structural MRI, and 
changes in brain activity measured using 
fMRI. However, such a close relationship 
remains to be demonstrated. The cellu-
lar basis of the changes underlying VBM 
findings associated with structural MRI is 
uncertain, and BOLD fMRI signals can in 
certain circumstances be dissociated from 
patterns of neuronal spiking155–159. It is thus 
conceivable that individual differences in 
anatomical structure and BOLD activity 
may be dissociated for components of brain 
networks associated with certain behaviours. 
We suggest that understanding the relation-
ship between inter-individual differences in 
brain structure and brain function may be a 
rich area for future research.

Conclusions and future directions
Investigations of inter-individual differences 
in human behaviour show that surpris-
ingly rich information about individuals is 
encoded in their brain anatomy and can be 
measured using non-invasive structural MRI. 
There has been a rapid growth in the number 
of studies examining inter-individual differ-
ences in human behaviour and its associa-
tion with structural features of the brain. 
Associations between white and grey matter 
anatomy and behaviour are not confined to 
motor behaviour and motor learning, but 
extend into domains of sensory perception 
and many areas of higher-order cognition. 
This has identified a number of crucial 
issues for future work to address: first, cross-
sectional studies do not distinguish between 
the possibilities that brain structure varies 
in response to behavioural variability or vice 
versa. Longitudinal or interventional studies 
are required to help parse causality between 
brain structure and behaviour. Second, the 
time course of structural plasticity needs to 

be addressed. In the motor domain, a sur-
prising amount of short-term plasticity (over 
a few weeks) in brain structure is apparent. 
The degree to which other aspects of inter-
individual variability in perception or higher 
cognitive processes are susceptible to similar 
plasticity is an intriguing topic for future 
development. Third, the predictive power of 

brain anatomy for evaluating brain structural 
correlates of individual differences needs 
to be established more fully. Recent efforts 
to predict clinical phenotype from brain 
anatomy in autism spectrum disorders160 and 
Alzheimer’s disease161 highlight the potential 
for using brain anatomy as an aid to clinical 
diagnosis. This raises the question of how 

Box 3 | Is more grey matter always associated with better performance?

It is often assumed that a larger cortical volume or greater grey matter density is associated 
with better computational efficacy of that region. Many examples discussed in this Perspective 
are consistent with this view. However, there are cases in which lower cortical volume is 
associated with better task performance. For example, in individuals afflicted with congenital 
amusia — a difficulty in detecting pitch change in melody — the cortex is larger and thicker in 
the right inferior frontal gyrus and in the secondary auditory cortex179,180. Similarly, the ability 
to manipulate self-generated thoughts improves during adolescence, and this is associated 
with a decrease in grey matter volume of the rostrolateral prefrontal cortex181. Moreover, 
people who are easily distracted in everyday life have a larger left superior parietal lobe than 
those who are not easily distracted182.

This inverse relationship between structure and performance might be explained from a 
developmental perspective. During adolescence, the synapses in the cortex undergo pruning183, 
and the computational efficacy of cortical regions is thought to improve after the pruning 
process by removing weak synapses184. Also, the number of neurons decreases with maturation of 
the brain185. Macroscopic reduction in grey matter density can be observed non-invasively in the 
human brain186–191. Loss of grey matter volume initially begins in primary sensory and motor areas 
in early childhood and then spreads to the frontal and parietal cortex (see the figure, which 
shows a reduction of grey matter volume in the age range of 5–21 years old). The reduction in 
grey matter volume is thought to reflect synaptic and/or neuronal pruning processes and to 
underlie maturation of the cortex. Considering cortical pruning as a process of removing 
inefficient synapses and neurons, it is conceivable that a smaller volume (or lower grey matter 
density) as a consequence of the synaptic pruning leads to more efficient processing.

However, this is only one aspect of the capacity–volume relationship. Macroscopic grey matter 
volume measured by MRI consists of various substructures, such as neuronal cell bodies, 
dendrites, axon terminals and glial cells. How the amount and balance of these microstructures 
translates into the computational capacity of the cortex is unclear. For example, it is possible 
that grey matter with more neurons and grey matter with fewer synapses could both lead to a 
good performance. In such a situation, the balance between different constituents of grey 
matter would be as important as volume. Future research will need to address the relationships 
between microstructures and the computational capacity of the cortex. Figure is reproduced, 
with permission, from REF. 185 © 2004 National Academy of Sciences.
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much behavioural variability in healthy 
humans can be predicted on an individual 
(or group) basis from brain anatomy; and 
whether such variability can (or should) have 
an application. Fourth, the microstructural 
basis of MRI structural differences needs to 
be determined. The relatively poor under-
standing of the structural basis underlying 
differences detected by VBM and other MRI-
based techniques will remain a limitation 
until its cellular basis is better characterized. 
The lack of inter-individual variability in  
animal models may present a difficulty  
in addressing this question.

In this Perspective, we have argued that 
inter-individual differences in behaviour, 
often discarded by averaging data across 
participants, can be a rich and important 
source of information and can be exploited 
to reveal the neural basis of human cogni-
tion and behaviour in general. We suggest 
that the future directions outlined above 
will be important areas of research to build 
the foundations of this emerging area of 
research.
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